ABSOLUTE STEREOCHEMISTRY OF THE INSECT ANTIFELDANT CADINENE FROM EUPATORIUM ADENOPHORUM

M J Bordoloi, V S Shukla and R P Sharma^{*} Division of Natural Products Chemistry Regional Research Laboratory (CSIR), Jorhat-785006, India

<u>Summary</u>: Chemical correlation studies and application of Horeau's method establish the absolute stereochemistry of the major cadinene from <u>E. adenophorum</u> as shown in <u>1</u>.

Stereochemistry of cadinenes has always been a challenging problem, many structural and stereochemical assignments are dubious even till now¹. Of the five cadinenes isolated from <u>E</u>. <u>adenophorum</u>², compound <u>1</u> was the major component. Since <u>1</u> exhibited appreciable antifeedant action against <u>Philasomia ricini</u> Hutt and also because of many other interesting biological properties associated with the cadinene group of compounds³, it was of interest to us to establish its absolute stereochemistry.

Reaction of $\underline{1}$ with POCl₃ in pyridine furnished $\underline{2}$ in 70% yield which was isomerized to $\underline{3}a$ in refluxing benzene containing a trace amount of toluene-p-sulphonic acid. Compound $\underline{3}a$ was reduced with sodium borohydride in methanol to obtain $\underline{3}b$ in 80% yield which on exposure to hexamethyldisilazane and chlorotrimethylsilane furnished $\underline{3}c$ in quantitative yield. All attempts at reductive removal of the hydroxyl group in $\underline{3}b$ with LAH/AlCl₃ or by LAH reduction of the tosylate of $\underline{3}b$ led mainly to the formation of calamenene $\underline{5}$. However, when a solution of $\underline{3}c$ in dry diglyme was stirred with nickel boride⁴ for 8 hr at r.t., <u>ent</u>-10-epizonarene $\underline{4}$ was obtained in 80% yield⁵. This correlation established the absolute stereochemistry at C-1 and C-10 of $\underline{1}$. Since the relative stereochemistry at C-1, C₁₀ and C₆ through C₈ is known^{2a}, $\underline{1}$ represents the absolute stereochemistry thus suggesting that it belongs to the amorphane group of compounds⁶.

The same conclusion has been drawn by determining the absolute configuration at C-8 through Horeau's method⁷. Reaction of <u>1</u> with excess (<u>+</u>)- α -phenylbutyric anhydride gave (+)- α -phenylbutyric acid in 14% optical yield, implying that the configuration at C-8 is R.

References :

- a) A K Borg-Karlson, T Norin and A Talvitie, <u>Tetrahedron</u>, <u>37</u>, 425(1981).
 b) M D Softer, L A Burk, J M Troup and M W Extine, <u>Tetrahedron Lett.</u>, <u>24</u>, 1455(1983).
- 2. a) F Bohlmann and R K Gupta, <u>Phytochemistry</u>, <u>20</u>, 1432(1981).
 b) V S Shukla, P K Chowdhury, N C Barua, R P Sharma and J N Barua, Chem. & Ind., 863(1983).
- 3. a) Lu Yi-Chang, <u>Hua Hsueh Hsueh Pao</u>, <u>38</u>(3), 241(1980); <u>CA</u>, <u>94</u>, 20219(1981).
 b) P S Kalsi and K K Talwar, <u>Phytochemistry</u>, <u>20</u>, 511(1981).
 - c) M Katayama, S Marumo and H Hattori, Tetrahedron Lett., 24, 1703(1983).
 - d) R D Stipanovic, G A Greenblatt, R C Beier and A A Bell, Phytochemistry, 20, 729(1981).
- 4. a) R B Boar, D W Hawkins, J F McGhie and D H R Barton, <u>J. Chem. Soc</u>., 654(1973) and references cited therein.
 b) Nickel boride reduction of several other allylic trimethylsilyl ethers has furnished the corresponding alkenes in excellent yield and these results are being published in a separate communication.
- 5. N H Anderson, D D Syrdal, B M Lawrence, S J Terhune and J W Hogg, Phytochemistry, <u>12</u>(4), 827-33(1983).
- 6. Since <u>cis</u>-decalin can exist in two conformations, the small value of $J_{5,6}$ (\approx 2Hz) indicates that the dihedral angle between $H_5 \& H_6$ in <u>1</u> is close to 90°, in which case H-6 must be equatorial.
- 7. A Horeau, Tetrahedron Lett., 506(1961); ibid., 965(1962).

(Received in UK 13 November 1984)